A critical look at power law modelling of the Internet

Richard G. Clegg
Department of Electronics and Electrical Engineering, University College London,
email: richard@richardclegg.org

Carla Di Cairano-Gilfedder
BT Research,
email: carla.dicairano-gilfedder@bt.com

Shi Zhou
Department of Computer Science, University College London,
email: s.zhou@cs.ucl.ac.uk

Abstract
This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual improvements in network performance.

Key words: Internet, power laws, heavy-tails, long-range dependence, scale-free networks, network modelling

1. Introduction

Power laws describe a wide range of phenomena in nature and a large body of ongoing research investigates their applicability in fields such as computer science, physics, biology, social sciences and economics. Power law distributions are characterised by a slower than exponentially decaying probability tail, which loosely means that large values can occur with a non-negligible probability (see the next section for formal definitions). They can be used to characterise a variety of relations such as for example the distribution of
income, city population, citations of scientific papers, word frequencies, computer file sizes and the number of daily hits to a given website. See [1] and [2] and references therein for further examples.

The aim of this paper is not to be a general survey of power laws in networks but instead to be a critical look at open questions and the outcome of such research, in particular with regard to the question “How can power law modelling improve network performance?” The paper looks at two separate areas where power law research has been of interest in the Internet. The study of power laws in the analysis of Internet traffic characteristics has been ongoing since 1993 and in Internet topology generation since 1999.

In 1993, the seminal paper [3] (expanded in [4]) found evidence of the existence of power law relationships in network traffic by observing long-range correlation in Local Area Network (LAN) traffic. This brought the concept of self-similarity, and the related concept of Long-Range Dependence (LRD), into the field of network traffic and performance analysis. Before this finding, network traffic and performance studies had been mainly based on models, such as Poisson processes, which assume that traffic exhibits no long-term correlation. In networks with long-range correlated traffic, queuing performance can very different to that of traffic assumed independent or only having short-term correlations. Subsequently power law relationships have been observed in several other contexts on many different types of network.

In 1999 it was also discovered that the global Internet structure is characterised by a power law [5]. That is, the probability distribution of a node’s connectivity (measured for example by the number of BGP peering relations that an autonomous system has) follows a power law. This discovery invalidated previous Internet models that were based on the classical random graphs. Since then a lot of efforts have been put into studying the Internet power law structure [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

This paper reviews the measurements and models of the Internet topology, and comments upon whether the power law is in itself an adequate characterisation of the system. It questions whether models based on power laws provide a suitable platform for theoretical and simulation analysis of the Internet’s traffic and topological characteristics. Finally, it provides discussion of how such research could be of use in improving network performance (which, after all, should be the ultimate goal of networking research).

The structure of the paper is as follows. Section 1.1 provides the basic mathematical definitions used throughout the paper: heavy-tailed distributions, long-range dependence and statistical self-similarity. Section 2
describes the use of power law relationships to model the statistical nature of Internet traffic. Section 3 discusses “scale-free networks” a power law relationship which describes the connectivity of networks.

1.1. Basic definitions

In the sense meant in this paper, a power law relationship is a function, \(f(x) = \alpha x^\beta \) where \(\alpha \) and \(\beta \) are non zero constants. Several relationships of interest in the Internet have been shown to have this form asymptotically (usually as \(x \to \infty \)).

Definition 1. A random variable \(X \) (which may be continuous or discrete) is said to have a heavy-tailed distribution if it satisfies

\[
P[X > x] e^{\epsilon x} \to \infty, \text{ as } x \to \infty.
\]

Often a specific power law form is assumed for the distribution:

\[
P[X > x] \sim Cx^{-\alpha},
\]

for some \(C > 0 \) and some \(\alpha \in (0, 2) \). The symbol \(\sim \) here and for the rest of this paper means asymptotically equal to, that is \(f(x) \sim \phi(x) \iff f(x)/\phi(x) \to 1 \) as \(x \to \infty \) (or occasionally, some other limit).

Definition 2. Let \(\{X_1, X_2, \ldots\} \) be a time series. The series is weakly-stationary if it has a constant and finite mean \(\left(E[X_i] = \mu \text{ for all } i, \text{ where } E \text{ means expectation}\right) \) and for all \(i, j \in \mathbb{N} \) the covariance between \(X_i \) and \(X_j \) (i.e. \(E[(X_i - \mu)(X_j - \mu)]\)) depends only on \(|j - i| \).

Weak stationarity is assumed for much that follows but in practice is not met by real network traffic over all timescales (for example, over a sufficiently long time the mean traffic level is not stationary, it varies with daily and weekly periodicity) and may not be met at all [16, 17].

If the time series is weakly-stationary then the Auto Correlation Function (ACF) \(\rho(k) \) is given by

\[
\rho(k) = \frac{E[(X_t - \mu)(X_{t+k} - \mu)]}{\sigma^2},
\]

where \(\mu \) is the mean and \(\sigma^2 \) is the variance.

The ACF allows the definition of long-range dependence which is sometimes called long memory or strong dependence. A standard reference on the topic is [18]. A commonly used definition is the following.
Definition 3. A weakly stationary time series is long-range dependent if the sum of the autocorrelation over all lags $\sum_{k=1}^{\infty} \rho(k)$ diverges.

Definition 4. The Hurst parameter is a commonly used measure of LRD. This makes the assumption that the ACF follows the specific functional form

$$\rho(k) \sim C \rho^{-\alpha} = C \rho^{2 - 2H}, \tag{1}$$

where $C > 0$ and $\alpha \in (0, 1)$ and $H \in (1/2, 1)$ is the Hurst parameter.

Note that sometimes it is this and not Definition 3 which is taken as the definition of LRD. Other measures of LRD include Hurstiness [19, Chapter 8] and the ‘strength’ parameter used by [17].

LRD processes which meet Definition 3 but not Definition 4 will have no well-defined Hurst parameter. The value $H = 1/2$ is usually taken to mean independent or short-range dependent data. Values of $H \in (0, 1/2)$ are sometimes termed anti-long-range dependence. Values of $H \leq 0$ or $H \geq 1$ do not give useful models [18, Section 2.3].

LRD can also be considered in the frequency domain. In this case, the characteristic of LRD is a pole in the spectral density (usually at zero).

Definition 5. Let Y_t be a stochastic process in continuous time $t \geq 0$. The process is exactly self-similar with self-similarity parameter H if for any choice of constant $c > 0$, the rescaled process $c^{-H} Y_{ct}$ is equal in distribution to the original process Y_t.

Note that a similar definition can be given for discrete time stochastic process.

Definition 6. Let Y_t be a stochastic process and $Y_t^{(m)}$ be the process derived from it by $Y_t^{(m)} = \frac{1}{m} \sum_{i=tm-(m-1)}^{tm-1} Y_i$. A process Y_t is exactly second-order self-similar if, for all m, the process $\{m^{1-H} Y_t^{(m)}\}$ has the same variance and autocorrelation function as Y_t. That is to say, for all $k \in \mathbb{N}$ and $m \in \mathbb{N},$

$$\text{var}(Y_k^{(m)}) = \frac{\text{var}(Y_k)}{m^{2-2H}}$$

and

$$\rho^m(k) = \rho(k), \tag{2}$$

where $\rho(\cdot)$ is the ACF of Y_t and $\rho^m(\cdot)$ is the ACF of $Y_t^{(m)}$.

4
Second-order self-similarity can also be defined in terms of the second central difference operator \[20\]. A process \(Y_t\) is asymptotically second-order self-similar if (2) holds as \(k \to \infty\).

Finally it remains to define scale-free (or power law) networks.

Definition 7. Let \(G\) be an undirected graph. Let \(P_k\) be the probability that a randomly selected node in \(G\) has degree \(k\). The graph \(G\) is scale-free if \(P_k\) (the node-degree distribution) is heavy-tailed if:

\[P_k \sim C k^{-\alpha},\]

where \(C > 0\) is a constant and \(\alpha \in (0, 2)\).

Similar definitions can be constructed for a directed graph. The in-node degree distribution and the out-node degree distributions are treated separately in this case.

A process which scales in a constant way is sometimes referred to as monofractal. A generalisation of this is a multi-fractal process which exhibits complex behaviour that changes over different timescales \[21\]. When the multi-fractal behaviour can be approximated by a combination of two (or a small number of) monofractals then the process is sometimes described as having monofractal behaviour at different timescales rather than multifractal behaviour.

There are many connections to be made between these power laws, some more obvious than others. For example, a scale-free network is simply an example of a heavy-tailed distribution (as its node-degree distribution is heavy-tailed).

One connection which is sometimes less than clear from the literature is that exact second-order self-similarity as in Definition 6 implies LRD of the form given by (1). LRD of the form in (1) implies asymptotic self-similarity. The details of this relationship can be found in [20] and [22]. There is a more subtle connection between self-similarity and long-range dependence. If a self-similar process \(Y_t\) has stationary increments and \(H \in (0, 1)\) then it can be shown (see [18, page 51]) that the increment process given by \(X_i = Y_i - Y_{i-1}\) for \(i \in \mathbb{N}\) has an ACF given by \(\rho(k) \sim H(2H - 1)k^{2H-2}\), which implies that for \(H \in (1/2, 1)\) then the increment process is long-range dependent.

The connection between heavy-tails and long-range dependence is more subtle. One such connection is [23, Theorem 4.3] which states that in an
on/off process with heavy-tailed on periods and off periods which fall off faster is a long-range dependent process. Other connections between power laws can be found in \cite{24, 25}. These papers show that multiplexing a high number of independent on/off sources with heavy-tailed strictly alternating on and/or off periods gives rise to self-similarity.

2. Power laws and Internet traffic

Nearly fifteen years ago, the seminal paper \cite{3} found the existence of power law behaviour in Internet traffic. A time series describing LAN Ethernet packet traces at Bellcore showed evidence of second order self-similarity or long-range dependence. This paper for the first time questioned traditional modelling assumptions and showed that existing models (often based on Poisson processes) would not correctly estimate important characteristics of a network. Since this paper, many hundreds of papers have been published about the power law behaviour of Internet traffic. A recent edition of the journal *Performance Evaluation* was devoted to this topic and the editorial describes modelling of LRD and heavy-tails as “One of the most important research topics in performance modelling and evaluation in the last decade” \cite{26}.

2.1. Measuring long-range dependence

The Hurst parameter is often used as an estimate of traffic’s LRD. This parameter however has to be used with prudence, as measuring traffic LRD and statistical self-similarity is a complex task which may be affected by many factors. Although, the estimation process can provide indication of the existence of long-range dependent characteristics, it does not unequivocally prove the existence of authentic LRD, as these characteristics may simply be due to traffic non-stationarity. In the time domain, the estimation of the Hurst parameter is characterised by the fall off of the ACF at high lag. However, the high lag measurements are those at which the fewest readings are available and the data is most unreliable. Similarly, in the frequency domain, the LRD is characterised by the behaviour of the spectrum at frequencies near zero, which are necessarily hard frequencies to measure. In terms of queuing performance, despite the common misconception, a high Hurst parameter does not always lead to worse performance or longer queues \cite{27}. In fact, depending on the timescales of interest, traffic with a high Hurst parameter can lead to better performance than traffic with a low Hurst parameter. No
single Hurst parameter estimator can be considered infallible, as this can hide LRD when it exists or create it when it does not [28]. In addition, the Hurst parameter itself expresses the traffic scaling of the fluctuations around the mean and does not measure traffic burstiness.

It is certain that simply examining the ACF is not a robust way to estimate the Hurst parameter. In addition, a number of biases may be present in real-life data which could cause problems. These include periodicity (users and processes daily usage patterns) and trends (traffic volume changes throughout the measurement period) which violate the assumption of weak-stationarity. The topic of measuring LRD is beyond the scope of this paper, the reader is referred to [29, 30] for work which compares existing techniques.

2.2. Evidence for and against power law behaviour in Internet traffic

The original long-range dependence findings reported in 1993 [3] have subsequently been replicated in many different studies. In 1995, Floyd and Paxson [31] found that WAN traffic is also consistent with self-similar scaling. These findings have been confirmed in the late nineties in [32, 33]. In particular, in [32] the authors analyse WWW traffic and observe self-similarity in the patterns of recorded traffic and a heavy-tailed distribution in the sizes of the files transferred. They claim that heavy-tailed sizes of transferred files is the cause of the observed self-similarity. Also, in the late nineties, evidence was found that heavy-tailed distributions characterised a number of different measurements related to network traffic. In [34] the authors report on observations of heavy-tailed distributions of file sizes on web servers and also of CPU time taken by processes.

The paper [35] analyses WWW flow duration distribution at a lightly utilised academic campus Internet access. It finds that the tail of the flow duration distribution does not stabilise. The suggestion is that the best fit to the data is with a power law which varies in time.

In 2005, [36] also investigated the power law behaviour of WWW traffic and found evidence of self-similarity over a number of timescales.

The paper [17] is sometimes cited as evidence that LRD is not an important property of Internet traffic. The data they analyse was collected in 2000 on a 100 Mbps Bell Labs Ethernet link. Looking at inter-arrival times the authors find that when the traffic has more connections present the “strength” of the LRD is decreased. Note that this “strength” is not related to the Hurst parameter but could be considered analogous to the proportion of the traffic
which exhibits LRD. Their conclusion is that as the number of connections in the network increases the traffic will remain long-range dependent, but that the strength of the LRD will be weaker, and the arriving traffic will look more like a Poisson process.

In 2003, observations were recorded on university access links [37]. In the majority of the traces, the packet and byte count time series exhibit intermediate to heavy LRD, regardless of time of day or day of week. LRD is also found to be unaffected by traffic load and number of active connections. Therefore, in these access links, multiplexing of an increasing large number of TCP flows did not reduce correlation.

2.3. Behaviour at different timescales

Some authors have claimed that different scaling behaviour occurs at different time scales. This matter still seems to be an open research question. LRD and self similarity are both “monofractal” models in the sense that they assume a constant scaling behaviour over all time-scales. Strictly speaking asymptotic self similarity and LRD only imply this behaviour in the limit (at high lags or low frequencies). Multi-fractal modelling allows this scaling behaviour to change at each time scale considered. The topic of multi-fractal modelling is beyond the scope of this paper. For a good introduction see [38]. Some authors have claimed that a multi-fractal approach is necessary to replicate the behaviour of Internet traffic. However, others have argued that this is not the case and a mixture of different monofractal scalings at different timescales is necessary.

It has been argued (see [39, 33]) that protocol mechanisms (such as the TCP feedback mechanism) have the greatest impact at smaller timescales. At these timescales they claim that the traffic is consistent with multi-fractal scaling, but at larger timescales (larger than the typical RTT on the network being investigated) the traffic looks self-similar.

[40] compares the scaling behaviour of aggregated fractional Brownian motion processes with that of real traffic and concludes that it is not a good match and therefore suggests multifractal behaviour may be necessary to provide a good fit to real traffic traces.

In [41] the relationship between wide-area traffic correlation and link utilisation is explored at different timescales. They find that at small timescales burstiness can impact on performance at low and intermediate utilisations, while correlations at larger timescales are more significant at intermediate and high utilisations.
The paper [42] analyses backbone traffic traces at multiple Tier 1 links and investigates its behaviour at small scales (less than one second). The presence of correlation at small timescales is attributed to the characteristics (and not the number) of the aggregated flows and affected by the presence of dense flows characterised by bursts of clustered packets. They conclude that, at small timescales, traffic has mainly a monofractal behaviour and even that the traffic is “almost independent” – this is a contrast to much of the other work discussed in this section.

The paper [43] sheds more light as regards to the possible causes of traffic correlation at sub-RTT timescales on backbone links. This paper confirms the findings in [42] but in addition suggests that these clusters of bursts derive from TCP self-clocking mechanism and queuing delays. These clusters of bursts are produced by flows with large bandwidth-delay product relative to their window size.

Internet backbone traffic dated 2002–4 is also analysed in [28] with the conclusion that the Poisson distribution can adequately model packet arrivals at smaller timescales (the threshold where behaviour changes from Poisson to LRD varies but is around 1000ms). It confirms the existence of LRD in packet and byte counts at timescales larger than a second.

In [44], the author considers the rate of TCP flow arrivals rather than the total traffic on a link. Several traces are investigated, collected between 1993 and 2002. The analysis finds different scaling behaviours over a range of timescales and concludes that the flow arrivals are uncorrelated at the smallest timescales, correlated at timescales between seconds and minutes and consistent with “LRD or self-similarity between minutes and hours” but non-stationary time-of-day behaviour prevails at longer time scales.

In [45] the authors argue using analysis of several traces (taken between 1989 and 2002) that at longer timescales LRD is an appropriate model and at shorter timescales they refer to the behaviour as “pseudo-scaling”, a process which gives the appearance of multifractality but “which does not have true multifractal scaling underlying it” – in other words that the multifractal scaling observed by earlier authors is unnecessary. The scale at which the behaviour changes differs according to the trace being examined.

In summary, consensus seems to have formed that LRD behaviour predominates when traffic is considered at a larger timescales (at least until the user related non-stationarity disturbs the observation). However, the shorter timescale behaviour is a matter for much debate with some authors suggesting something as simple as a Poisson model is adequate, others suggesting
2.4. Possible causes of long-range dependence in network traffic

The origins of power law behaviour in network traffic have not been unequivocally identified. Several possible causes for the presence of long-range dependence have been proposed in the literature.

Heavy-tailed distributions. A common suggestion is that the heavy-tailed nature of data transfers leads to LRD in the resultant traffic (see [23, Theorem 4.3]). Simulation studies have confirmed this experimentally: [34], for example, found it to hold over a range of link bandwidths and a range of buffer sizes. Also in [46], simulations show that heavy-tailed file sizes lead to self-similarity on large timescales but also that the delay behaviour interacts with the TCP feedback mechanism to greatly alter the structure of the traffic at shorter time scales.

TCP protocol. It has been argued [47] that TCP congestion control alone can cause self-similarity regardless of the application layer traffic characteristics. This argument however is contested in [48] which looks at the same data but over longer time scales and finds that it is not consistent with power law behaviour. Also [49], by shuffling network samples, reordering traffic, and removing the effects of TCP mechanisms while leaving the effects of heavy-tailed traffic, is able to show that it is heavy-tailed traffic rather than TCP feedback mechanisms which leads to long-range dependence.

It has been suggested [50] using evidence based upon Markov modelling that the TCP timeout mechanism can lead to “local long-range dependence” which they also refer to as “pseudo self-similarity”, that is to say, self-similarity over a small number of timescales (note that this is not true self-similarity).

The proposal in [51] suggests that TCP retransmission mechanism can give rise to self-similarity. Also [34] concludes that TCP can preserve long-range dependence over time while [52] suggests that TCP can preserve correlation over space.

Queuing/Routing effects. Another possibility is that power law traffic arises as a result of the interaction of queues and routing on a network [53]. Simulation experiments shown that even when “packet inter-departure times are independent, arrival times at the destination exhibit LRD”, perhaps as a result of the routing algorithms [54, 55].
Multi-layers and timescales. There is also the possibility that long-range dependence simply arises because of the combination of processes occurring at different timescales: user’s activity, session, and transmission processes. In fact, it can be seen that even under the assumption of Poisson distribution for all usage, session, and transmission processes, the mere presence of multiple layers may lead to correlated traffic [50].

Intrinsic traffic nature. It has long been known that some types of traffic exhibit LRD at the source. For example, variable bit rate video traffic deriving from a single flow shows LRD in a time series of traffic [57]. While no clear consensus has yet formed, many of the authors cited in this and the previous two sections agree that heavy-tails are the cause of the LRD observed in larger time scales. No consensus seems yet to have been reached on the behaviour of traffic at shorter time scales and this remains an important topic for traffic research. The lack of consensus in this is reflected in the number of possible causal models for the short timescale behaviour.

2.5. Effects on queuing

The effects of long-range correlated traffic on buffer dimensioning have been analysed by means of appropriate queuing models developed in [58, 59, 60, 61, 62] among others. These models apply to infinite buffers and only provide asymptotic results. Under the assumption of infinite length buffer and long-range dependent input traffic the main finding is that the distribution of queue length has slower than exponential decaying tail, as opposed to exponential observed for short-range dependent traffic. This decaying function has instead been described by other distributions such as for example a Weibull [52] and polynomial [61].

In the case of finite buffer systems, it has been suggested that, in a network with long-range dependent traffic, the packet loss ratio is several orders of magnitude higher than with short-range dependent traffic [63]. The packet loss ratio could only be contained by choosing very large buffers which would have an impact on queuing delay [63]. However, in the mid-nineties other authors cast doubt on the usefulness of power law models of Internet traffic, by questioning the importance of capturing traffic long-range dependence in the case of finite buffers [64, 65]. They argue that correlation becomes irrelevant for small buffers and short timescales.
2.6. Traffic generation models

A variety of mathematical models have been suggested in the literature to capture the LRD in Internet traffic. For a comprehensive review of these models the reader is referred to [21]. Only a short summary is provided here.

Fractional Brownian motion (fBm) is a non-stationary stochastic process which is a generalisation of the well-known Brownian motion, but with a dependence term between samples. It is a self-similar process and has a defined Hurst parameter H, with the Brownian motion obtained for $H = 1/2$. If $B_H(t)$ denotes the fBm then the difference process $Y_k(\cdot)$ defined as $Y_k(t) = B_H(t + k) - B_H(t)$ with $H \in (1/2, 1)$ is the fractional Gaussian noise (fGn) which is long-range dependent. Several methods exist for generating a fGn process, for example [66].

Although fGn is mathematically attractive its simplicity means that it cannot capture a diversity of mathematical properties. The queue length distribution obtained with a fGn process decays according to the Weibull or “stretched exponential” distribution, which is heavy-tailed only in a weak sense [67].

Fractional Auto-Regressive Integrated Moving Average (FARIMA) [18, pages 59–66] models are an expansion of the classic time-series ARIMA models and allow modelling of long and short range dependence simultaneously and independently.

Long-range dependence can also be generated by using chaotic maps as first proposed by Erramilli and Singh [68]. However, modelling based on chaotic maps requires considerable experimentation, as these are very sensitive to initial conditions and their many parameters’ estimation is often a complex task [56]. The queue length distribution obtained with a chaotic maps family has been found to decay according to the Weibull distribution [69].

Another model is based on the superposition of heavy-tailed on/off sources [25]. The process obtained by multiplexing many on/off sources with heavy-tailed distributions tends to a fGn process.

Finally, another technique for modelling traffic is by means of Wavelet analysis [70]. This allows not only capturing the Hurst parameter but also synthesising a wide range of scaling behaviours and the replication of the multi-fractal spectrum [71, 38].

An important criticism of these models is in their replication of queueing behaviour. While much work has been done to show that the models replicate
certain representative traffic statistics, one of the primary motivations cited for using LRD models of queuing is estimating delays and buffer overflow probabilities. These models have not been shown to do this well, indeed while it has been shown that some mathematical models of LRD have very different queuing behaviour to non LRD versions of those models, it remains to be shown that LRD is necessary to replicate the queuing and delay performance of real traffic.

2.7. Criticisms and commentary

Although the majority of papers appear to replicate the finding that LRD is present in network traffic, some have questioned whether other models are more appropriate (for example multi-fractal models [39, 33]). Multifractals are in fact able to model varying scaling behaviour over different timescales, as they are characterised by a time dependent scaling coefficient. In addition, LRD appears at long timescales which are more relevant for network dimensioning and less for queuing behaviour. Others have also questioned whether LRD may be unimportant in practice, for example due to multiplexing gains [17].

Consensus seems to be forming on the origin of LRD behaviour (as discussed in section 2.4) although some controversies remain. As regards to its effects, papers in the area often focus on the fact that LRD may impact on network performance by increasing delays or increasing the packet loss expected for a given buffer size. However this relationship is not a simple one and the presence of LRD does not always have a negative impact [27]. If a cause were unequivocally established the question would remain, “how might we go about eliminating LRD from the network given this cause?” If heavy-tailed file transfers are the cause then no clear method for resolving the problem is obvious. However, if TCP feedback mechanisms are a cause it would be difficult to change this without changing the protocol itself.

In order to understand the usefulness of power laws for practical studies, an important question to ask is whether LRD models generate traffic with the same queuing properties as real Internet traffic. If the models from Section 2.6 are to be useful then, when correctly tuned to the parameters of a genuine packet trace, they should have the same mean delay and buffer overflow probabilities as the genuine traffic. Huebner et al [72] tested a Poisson model, a Weibull model, an autoregressive (AR(1)) model, a Pareto model, and a Fractional Brownian Motion model for generating traffic. None of the models tested produced a good match for queuing performance in all circumstances.
The fBm model was useful only when the buffer size considered was large. Similarly, [73] tests the queuing performance of fBm and three other LRD models based on Markov modulated processes as well as some non LRD models. The models are tuned so that their parameters (mean and Hurst parameter) match real network traffic and the queuing performance of each is tested in an infinite buffer simulation. In this case, none of the traffic models replicated the queuing performance of the real traffic and the LRD models often showed different performance from each other despite having the same mean and Hurst parameter. Of course, even if a model could be found which accurately reproduced a given queuing behaviour obtained with real traffic, this would not solve the entire problem since the statistical nature of Internet traffic arises at least in part from TCP feedback mechanisms, which in turn depends upon potentially changing traffic levels and congestion.

Theoretically, some interesting queuing theory results for systems with LRD input traffic have been achieved but these results are often asymptotic results for infinite buffer models. How applicable these would be in practical situations remains an open question although, of course, it may be hoped that future theoretical results will build on them.

Several questions therefore remain about LRD. Which LRD model, if any, is appropriate to generate traffic which has similar delay and buffer overflow probabilities to real Internet traffic when queued? Can future networks be designed to mitigate the potentially deleterious effects on performance which are said to result from LRD? Can analytical models be developed which give strong enough results to be practically applicable to real traffic on real networks?

3. Modelling Internet topology

Topology is the connectivity graph of a network, upon which the network’s physical and engineering properties are based. The Internet contains millions of routers, which are grouped into tens of thousands of sub-networks, called Autonomous Systems (AS). The Internet topology can be studied at the router level and the AS level. Studies of the Internet topology very much depend on the availability and quality of measurement data. In the last decade a number of projects have provided more and more complete and accurate data on the Internet AS connectivity. By comparison it is more difficult to obtain router level data. So far there are more studies on the AS-level Internet topology than on the router-level.
In this paper the Internet topology is considered only at the AS level, in which a node is an AS network owned by an entity with a large Internet presence, such as an ISP or a large company; and a link represents a peering relationship between two AS nodes in the border gateway protocol (BGP) \cite{74}. Research on the structure and evolution of the Internet AS graph is relevant because the delivery of data traffic through the global Internet depends on the complex interactions between AS that exchange routing information using the BGP protocol.

3.1. Measuring Internet topology

Measurements of the Internet AS graph have been available since the late 1990s. There have been two types of measurements using different methodologies and data sources.

Passive measurements are constructed from BGP routing tables which contain information about links from an AS to its immediate neighbours. The Routing Information Service of RIPE \cite{75} is another important source of BGP data. The widely used BGP AS graphs are produced by the National Laboratory for Applied Network Research \cite{76} and the RouteViews Project at the University of Oregon \cite{77}. They are connected to a number of operational routers on the Internet for the purpose of collecting BGP tables. The Topology Project at the University of Michigan \cite{78} has provided an extended version \cite{79} of the BGP AS graph by using additional data sources, such as the Internet Routing Registry (IRR) data and the Looking Glass (LG) data. BGP-based AS measurements may contain links that do not actually exist in the Internet, but a more serious problem is that the BGP measurements may miss a significant number of links \cite{80}.

Active measurements are based on the traceroute tool which sends probe packets to a given destination and captures the sequence of IP hops along the forward path from the source to the destination. The Internet research organisation CAIDA \cite{81} has developed a tool called skitter which probes around one million IPv4 addresses from 25 monitors around the world. Using the core BGP tables provided by RouteViews, CAIDA maps the IP addresses in the gathered traceroute data to AS numbers \cite{82} and constructs AS graphs on a daily basis. DIMES \cite{83} is a more recent large-scale distributed measurement effort. It collects traceroute data by probing from more than 10,000 software clients, installed by volunteers in over 90 countries, to destinations assigned by a central server at random from a set of five million destination addresses. To further improve the completeness, DIMES merges the resulting AS graph...
with that of RouteViews. By using more monitors and a larger list of distinct addresses, DIMES produces larger AS graphs than skitter. The shortcoming of the traceroute measurements is that the translation from IP addresses to AS numbers is not trivial and could introduce many errors \[84\] and also, increasingly, firewalls block the probe packets. A recent study \[85\] suggested that traceroute measurements should probe destinations more frequently and avoid using a fixed list of destination addresses.

3.2. Power law degree distribution

In graph theory, degree \(k \) is defined as the number of links, or immediate neighbours, of a node. Degree is the principal parameter for characterising network connectivity. The first step in describing and discriminating between different networks is to measure the degree distribution \(P(k) \), which is the probability of finding a node with degree \(k \). In 1999 it was discovered that the Internet topology at the AS level (and the router level) exhibits a power law degree distribution \(P(k) \sim Ck^{-\gamma} \), where \(C > 0 \) is a constant and the exponent \(\gamma \approx 2.2 \pm 0.1 \). This means on the Internet AS graph, a few nodes have very large numbers of links, whereas the vast majority of nodes have only a few links. Although different Internet AS graphs produced from different data sources vary in the numbers of nodes and links, all the Internet AS graphs are well characterised by a power law degree distribution \[86\]. The power law distribution is an evidence that the Internet AS level topology has evolved into a complex, heterogeneous structure that is profoundly different from Internet models based on the random graph theory. This discovery profoundly changed the understanding of Internet topology. Since then there has been an international effort in characterising and modelling the Internet topology.

3.3. Power law or sampling bias?

A major problem of current measurements of the Internet AS graph is that these measurements, whether based on BGP, traceroute or other sources, miss a significant number of links \[79, \ 87, \ 80\]. Some researchers suggested \[87, \ 80\] that there could be as many as 35\% of the links in the AS level Internet that were still to be discovered. A series of papers \[88, \ 89\] reported that the traceroute type of measurement data collected from a small number of observers are not only incomplete but are possibly biased in such a way that graphs which in fact have Poisson degree distributions appear to exhibit a power law. There has been a debate on whether the power law
degree distribution an integral property of the Internet AS graph or merely an artifact due to biased sampling methods.

There are two sides of the argument. Many researchers believe that the power law is an integral property of the Internet. Firstly all Internet AS graph measurements exhibit a power law degree distribution including the DIMES data which are collected from numerous observers distributed in thousands of AS networks around the world, as well as the BGP AS graph based on routing table data collected from many monitors and accumulated over many years. Secondly, a recent study[90] shows that if the larger real graph had a Poisson degree distribution and the observed power law were due to sampling bias, then the real graph’s average degree would be very large. In the case of the AS network the true average degree would have to be around one hundred. The observed average degree in the known sources is between five and seven so if this model were true it would require the unlikely proposition that less than one in ten edges have been observed. Surely this can not be true.

On the other hand, there are also many researchers who are sceptical about the power law degree distribution. Firstly, the visibility of the AS graph can be influenced to a great extent by which vantage points are used, not by how many. Secondly the analysis in[90] rejects the claim that the real AS graph may follow a Poisson degree distribution, but the real question is whether the Internet AS graph is characterised by a power law distribution or a different heavy-tail distribution which does not follow a power law.

Only better measurement data can settle this issue. The current situation is that all measurements are incomplete and bias in one way or another. There is an urgent need for improved methods to produce more complete and accurate data. A recent effort towards this direction is[85] which investigates both the completeness and the liveness problems in the measurement of Internet AS graph evolution.

3.4. Structures beyond the power law

Degree distribution is a first-order topological property which is based on the connectivity information of individual nodes. When studying the Internet structure, it is important to look beyond the power law degree distribution because networks with exactly the same power law degree distribution can have completely different high order properties[91, 92, 93, 94].

High order properties are calculated on the connectivity information of a pair, a triad or a set of nodes. High order properties are able to explicitly
determine lower order properties whereas the later only constrain the former. Researchers have introduced many high order topological properties, each of which has a distinct physical meaning, for example the degree-degree correlation\cite{95, 96, 97, 98} which indicates whether high-degree nodes tend to connect with high-degree nodes (so-called ‘assortative mixing’) or low-degree nodes (‘disassortative mixing’); the rich-club coefficient\cite{99, 94} which quantifies how tightly the best connected nodes connect with themselves; the clustering coefficient\cite{100} which measures the fraction of a node’s neighbours which are neighbours to each other; the average shortest path which is the average hop distance between any two nodes; the k-core decomposition\cite{101} which reveals a network’s underlying hierarchical structure; and the betweenness which measures how often a node or a link is on the shortest (fewest hop) path between two nodes.

The Internet topology can be described as a jellyfish\cite{102}, where a highly connected core is in the middle of the cap, and one-degree nodes form its legs. This intuitive model is simple yet very useful as it concisely illustrates a number of important properties of the Internet, including the dense core (rich-club) and the large number of low degree nodes (power law) which are directed connected with members of the core (disassortative mixing). The Internet has a small average distance between any two nodes because the rich-club functions as a ‘super’ traffic hub which provides a large selection of shortcuts for routing and the disassortative mixing ensures that the majority of network nodes, which are peripheral low-degree nodes, are always near the rich-club.

Our knowledge and understanding of the Internet topology have been improved significantly in recent years. However, it is still profoundly difficult to define the Internet topology and there are many unanswered questions: What are the key properties that fundamentally characterise the Internet topology? How do these properties relate to each other? What is the role each property plays on the network’s function and performance?

It is suggested\cite{103, 104} that for the Internet, the second order properties are sufficient for most practical purposes; while the third order properties essentially reconstruct the Internet AS and router level topologies exactly. A recent work\cite{94} pointed out that for the Internet the degree distribution and the rich-club coefficient restrict the degree-degree correlation to such a narrow range, that a reasonable model for the Internet can be produced by considering only the degree distribution and the rich-club coefficient. Note that although these studies provide new clues on how to choose topological
properties for consideration in modelling the Internet topology, they do not constitute a ‘canonical’ set of metrics that are most relevant for the network’s function and performance.

3.5. Modelling Internet topology

Since the discovery of the power law degree distribution, a number of models have been proposed to generate Internet-like graphs [7, 8, 105, 14, 106, 107]. Models from networking community, such as Tier, BRITE [108], GT-ITM (Transit-Stub) and Inet [109], often suffer from problems of no (or an incorrect) power law, inaccurate large-scale hierarchy, requiring parameter estimation or providing a mechanism for network evolution; and models from physicists [110, 111, 112, 113, 13, 114] also have problems as they often are too general and do not incorporate any real network specifics.

In general there are two main approaches for generating topologies of complex networks [113]. The equilibrium (top-down) approach is to construct an ensemble of static random graphs reproducing certain properties of observed networks and then to derive their other properties by the standard methods. The non-equilibrium approach (bottom-up) tries to mimic the actual dynamics of network growth: if this dynamics is accurately captured, then the modelling algorithm, when let to run to produce a network of the required size, will output the topology coinciding with the observations. It is clear that the more ambitious non-equilibrium approach has the potential to hold the ultimate truth. Classic examples of this approach include the Barabási-Albert (BA) model [110] and the HOT model [92]. Many models owe their origins to the preferential attachment approach where new links attach to nodes with a probability proportional to the degree of that node.

The Positive-Feedback Preference (PFP) model proposed in 2004 [116] is an example of the non-equilibrium models for the Internet. The model is an extensive modification of the BA model. It is able to reproduce a large number of characteristics (including all topological properties mentioned above) of the Internet AS topology [117, 118, 119]. It uses two growth mechanisms inspired by observations on the Internet history data [95, 120, 121]. Firstly, the model starts from a small random graph and grows by two coupled actions called interactive growth, i.e. the attachment of new nodes to old nodes in the existing system and the addition of new links between these old nodes to other old nodes. This resembles the dynamics that when an Internet service provider (ISP) acquires new customers it reacts by increasing its number of connections to peering ISPs. Secondly, the preference probability that node
i acquires a new link (from a new node or a peer) is given as a function of the node’s degree \(k_i\),

\[
\Pi(i) = \frac{k_i^{1+\delta \log_{10} k_i}}{\sum_j k_j^{1+\delta \log_{10} k_j}}, \delta = 0.048.
\] (3)

This is called the positive-feedback preference, which means a node’s ability of competing for a new link increases more and more rapidly with its growing number of links, like a positive-feedback loop. The consequence is that ‘the rich not just get richer, they get disproportionately richer’. This mechanism resembles the ‘winner-takes-all’ trend in the Internet development. More recently Chang et al [15] proposed another bottom-up approach for generating Internet AS graph, where the Internet evolutionary process is modelled by identifying a set of criteria that an AS considers either in establishing a new peering relationship or in reassessing an existing relationship.

3.6. Practical responses to Internet power law modelling

It is suggested [122] that the Internet power law structure is relevant to a number of issues, such as the severely biased distribution of traffic flow, the slow convergence of BGP routing tables [123] and the large-scale cascading failure caused by incidents or deliberate attacks [124]. As such, the power law property also provides novel insights into the solutions of these problems. For example it is shown that the power law property makes it possible to mitigate the distributed denial of service (DDoS) attacks by implementing route-based filtering on less than 20% of AS [125]; a compact routing scheme based on the power law property requires a significantly smaller routing table size [126], and the power law property is relevant to the epidemic threshold for a network [127].

Albert et al [128] have reported that scale-free networks, i.e. networks having power law degree distributions, are robust to random failures but fragile to targeted attacks. This widely publicised work has generated a wave of studies on the robustness of various networks. This work, however, has generated some confusion in the Internet community. It should be noted that the Internet is much different from the generic BA model used in that study. Firstly the Internet AS topology does not follow a strict power law as in the BA model and the Internet’s high order topological properties are also significantly different from the BA model. Secondly it is unrealistic, if possible at all, to ‘attack’ an AS node, i.e. to wipe out an entire AS network.
and cut off all its connections with other networks. This is because an AS node can represent a network of thousands of routers which can spread across a number of continents. And finally it is important to realise that links on the Internet AS graph can represent different commercial relationships between AS networks, such that a ‘path’ of adjacent links between AS nodes on the Internet AS graph does not necessarily imply routing ‘reachability’ between the two AS. For example a customer AS does not transit traffic for its providers.

3.7. Criticisms and commentary

The discovery of a power law degree distribution in the Internet topology has attracted a huge amount of attention and there have been tremendous efforts to measure, characterise and model the Internet topology. Recent debate suggested that whether the power law degree distribution is an integral property of the Internet is still an open question. It is vital for researchers to look beyond the power law property and appreciate high order properties of the Internet topology.

There are generative models which well reproduce the Internet topology as a pure graph. However the reachability between two AS nodes on the Internet is not only affected by the underlying connectivity graph, but also constrained by many other factors, such as routing policies, capacities, demographic distributions and local structures. Future Internet models should more closely reflect the Internet specifics in order to produce practically useful results.

As pointed out in [129], there is a need for more interdisciplinary communication among computer scientists, mathematicians, physicists and engineers. Such communication is much needed to facilitate the interdisciplinary flow of knowledge and enable the network research community to convert theoretical results into more practical solutions that matter for real networks, e.g. performance, revenue and engineering.

4. Conclusions

An obvious question arising from this paper is whether there is a connection between the power law topology and the power laws observed in traffic levels. One likely mechanism for such an interaction would come from considering how traffic aggregates as a result of the topology. A starting point might be the work reported in [130] which combines power law topologies
with simulations involving LRD sources. Further research in this area might well be fruitful.

Most authors agree that power law relationships are present in measurements of network traffic. Measurements of file size transfers appear consistent with a heavy-tailed distribution. Measurements of traffic levels per unit time and packet inter-arrival times fit the hypothesis of LRD. However, this only describes the long time-scale behaviour (at least below the time-scale where day-to-day non-stationarity affects measurement). The behaviour of network traffic at shorter time scales is still an open question with different authors proposing different models. On the origin of long-range dependence, consensus appears to have formed that heavy-tailed distribution of file sizes is the major cause but with alterations to the short term behaviour arising from TCP protocol interactions. However, some authors give other explanations for the short term behaviour and the matter cannot yet be said to be definitively settled.

While many models have been proposed which generate traffic with the appropriate power law behaviour, it remains to be shown which of these, if any, best fits real traffic traces. In particular, if LRD is of relevance for queuing and buffer behaviour, it is key that the model selected replicates the queuing performance of the real traffic and this is an important shortcoming. The models proposed to describe queuing behaviour with long-range dependent input traffic suggest that the tail of the queue occupancy distribution decays slower than exponentially. If the study of power laws is to result in a positive effect on network traffic engineering then: 1) it is important to find a power law based traffic generation model which replicates the queuing performance of the real traffic. 2) progress needs to be made in ways to either mitigate the effects of LRD or to plan a network by allowing for it.

Researchers have also made progress on measuring and modelling the Internet topology at the AS-level. More complete and accurate measurement data are needed to justify whether the power law degree distribution is indeed an integral property of the Internet. Much more research work is needed, for example, to identify the key topological properties that fundamentally characterise the Internet structure and to include the Internet specifics in topology models. It is encouraging that the power law modelling of Internet topology have begun to stimulate research which takes advantage of this network structure. There is an increasing recognition that effective engineering of the global Internet should be based on a detailed understanding of issues such as the large-scale structure of its underlying physical topology,
the manner in which it evolves over time, and the way in which its constituent components contribute to its overall function [131].

In summary, for the research in power laws to truly have an engineering impact on the Internet, reliable and calibrated models are needed which match the characteristics of real data. It could be argued that there has been a certain level of success for topology generation but certainly not for traffic generation. The models should be capable of application as a design tool to allow engineers to improve real life network performance. As yet, this stage of research appears elusive in both fields.

References

[78] The topology project, University of Michigan, Ann Arbor, http://topology.eecs.umich.edu/

[81] The Cooperative Association for Internet Data Analysis (CAIDA), http://www.caida.org/.

[115] Status report of IRTF routing research group’s (RRG) future
domain routing (FDR) scalability research subgroup (RR-FS),

[116] S. Zhou, R. J. Mondragón, Accurately modelling the Internet topology,

[117] P. Krapivsky, D. Krioukov, Scale-free networks as pre-asymptotic
026114.

[118] H. Haddadi, D. Fay, A. Jamakovic, O. Maennel, A. W. Moore,
R. Mortier, M. Rio, S. Uhlig, Beyond node degree: evaluating AS topol-
(2008).

[119] S. Zhou, G.-Q. Zhang, G.-Q. Zhang, Chinese Internet AS-level topol-

[120] A. Vázquez, R. Pastor-Satorras, A. Vespignani, Large-scale topological

[121] S. T. Park, D. Pennock, C. L. Giles, Comparing static and dynamic
measurements and models of the Internet’s AS topology, in: Proc.

[122] M. Handley, Why the Internet only just works, BT Technology Journal

[123] C. Labovitz, A. Ahuja, R. Wattenhofer, S. Venkatachary, The impact
of Internet policy and topology on delayed routing convergence, in:

Ungar, Static and dynamic analysis of the Internet’s susceptibility to

distributed DoS attack prevention in power-law Internets, Computer

